
A callback is a routine in your
application that you arrange

to be called by someone else.
Generally this “someone else” is
Windows, but in a Delphi applica-
tion it can also be the Borland
Database Engine (BDE), among
others. Reasons for using callbacks
vary, depending on why the
support for them was implemented
in the first place. However, here are
just a few examples:
➣ You want to find all the top-level

windows in the system, and
perform some action for each of
them (Windows EnumWindows);

➣ You want to find all the child
windows of a particular win-
dow, and perform some action
for each of them (Windows
EnumChildWindows);

➣ You want to be notified when a
Paradox table is modified, or
periodically through a database
operation, so you can show
a progress report (BDE
DbiRegisterCallBack);

➣ You want to be notified when a
Windows API call is supplied an
invalid parameter (ToolHelp
NotifyRegister);

➣ You have some hardware and
need to service it reliably every
twentieth of a second (multi-
media library’s timeSetEvent);

➣ You have a desire to trap GPFs
yourself, instead of letting
Delphi’s exception handling do
it (ToolHelp InterruptRegister).

Before we look at implementing
callbacks, we need to examine
some theory and history.

The core set of Windows APIs
has many routines that call
callbacks, or cause callbacks to be
called, of which EnumWindows and
EnumChildWindows are just two – try
searching Delphi’s Help for
“Callback functions (3.1)”. There
are three kinds of callback routines
and it is important to understand
the difference, since two kinds
need to be given special attention.

The first type of callbacks will be
called whilst your application is
the current task, usually immedi-
ately following the callback-
oriented API call. EnumWindows and
EnumChildWindows work like this:
you call the API passing an appro-
priate routine and it is immediately
called once for each window in
question. The second callback
category is called when your task
is not necessarily the active task.
The table modification and
parameter validation callbacks
operate like this – when a table is
modified, or an invalid parameter
passed, it can be from any task in
the system. There is no guarantee
which task will be running when
the callback gets called.

The last category of callbacks
are interrupt level callbacks – they
are called from interrupt handlers.
An example of this type is the
Windows Multimedia library’s high
resolution, accurate timer callback
set in motion by the timeSetEvent
API (the multimedia help file
is \DELPHI\BIN\MMSYSTEM.HLP). The
ToolHelp library also invokes a
callback upon certain interrupts
occurring, and this is initiated with
InterruptRegister (although only
one of these callbacks is allowed
per task, and the SysUtils unit
already installs one for the
hardware exception handling).

So some callbacks are called
when your task is active, some are
called when any task is active and
others are called when certain
interrupts are generated, again
when any arbitrary task is active.

There is another type of callback
that is really reserved for the
propeller heads among us. Those
people wishing to implement
protected mode interrupt handlers
in Windows, for interrupts that
occur while the processor is in real
mode, can make use of DPMI
services to use real mode
callbacks. The idea is that you pass

Please Call Later...
Callbacks in Windows and the Borland Database Engine (Part 1)
by Brian Long

the interrupt handler’s address to
the appropriate DPMI interrupt
call, and it returns you the address
of a real mode callback. When the
real mode interrupt triggers the
real mode callback switches to
protected mode and calls your
handler. The terminology is a bit
different than with Windows
callbacks. We would expect the
real mode callback, generated by
the DPMI call, to be called a mode
thunk, and your interrupt handler
to be called the callback, but such
is life. Anyway, I don’t think we’ll be
coming back to this subject,
although if it is of interest it is
examined in detail with examples
in Section 5.10 of my Addison-
Wesley book The Borland Pascal
Problem Solver.

For a callback to work, it needs
to be made exportable. This means
that the first occurrence of the pro-
cedure or function header must be
followed by the export keyword.
The first occurrence will either be
a declaration of a public callback in
the interface section of a unit, or
the start of the definition of a pri-
vate callback in the implementation
section of a unit, or in the project
source code. Whether you actually
export the callback, by adding it to
the exports statement, is irrelevant
with respect to its correct function-
ing. Exporting a routine simply
puts information about it in the
header of the executable file. This
is fairly pointless in programs, as
the API that reads such informa-
tion, GetProcAddress, claims to not
find exported routines from
programs. If you export a callback
from a DLL, it makes it visible to
other applications as a normal
subroutine.

Historically, the use of Windows
callbacks has been a thorny issue
and cause for many a problem.
There is a pair of Windows APIs,
called MakeProcInstance and
FreeProcInstance, that needed to

November 1995 The Delphi Magazine 35

be called for things to work okay in
programs, but weren’t needed in
DLLs (although it didn’t matter if
you used them), and the whole
subject was not well understood by
Windows programmers. The basic
issue was that when Windows was
executing and about to call the
callback in your program, the data
segment register (DS) was set to a
Windows data segment. By the
time the callback executes, DS
needs to be looking at the
program’s data segment, so any
references to your global variables
etc will be valid operations.

At first glance you may think that
the entry code for the callback
(function prolog code) should be
able to set DS up, but this is not so.
Remember that if you run multiple
instances of an application, the
code is only loaded the first time.
Each invocation of the application
uses the same code, but has its own
separate data segment. One piece
of code could set DS up correctly
for one instance, but not for all in-
stances (although this is exactly
what happens in DLLs where each
copy uses the same data segment).

This is where MakeProcInstance
comes in: it returns a pointer to a
tiny piece of code, called a thunk
(or more specifically an instance
thunk) that in conjunction with the
callback prolog will set DS up
correctly. MakeProcInstance takes
two parameters, a callback func-
tion address and an instance
handle (the HInstance system
variable in a Delphi program). The
instance thunk (which can be
freed by FreeProcInstance) moves
HInstance (which in Windows is the
data segment value) into AX and
then calls the callback. The
callback prolog moves AX into DS,
providing the callback is export-
able, finishing the job. So the
thunk’s code looks like this:

asm
 mov ax, SavedHInstance
 jmp SavedCallBack
end;

and the prolog code for a function
in an application would look some-
thing like this by the time Windows
has loaded it (in fact the compiler

generates slightly different code
which is changed by Windows as it
is read in):

nop
nop
nop
inc bp
push bp
mov bp, sp
push ds
mov ds, ax

Because an exportable routine
loads DS from AX, it is unsafe to call
such a routine directly if the data
segment will be executed at any
point during its lifetime – AX won’t
have been set up with the
data segment value in it. Instead
you should always call the
code address returned from
MakeProcInstance (although this
isn’t necessary in DLLs – see later).

So hopefully that makes the
subject of callbacks as clear as a
reasonably clear thing. Unfortu-
nately the tale does not stop there.
There is more, much more. Recall
that most of the above was marked
as history. With Delphi we can
almost forget about all the
MakeProcInstance stuff, because
every Delphi application has smart
callbacks enabled by default.
Smart callbacks are set by the {$K+}
directive in the project source file,
or in the Options | Project... |
Compiler page. The intention of
smart callbacks is to remove the
need for MakeProcInstance by taking
advantage of a Windows implemen-
tation detail. Whenever you call a
DLL, the stack it uses is the caller’s.
So when you are calling Windows
APIs or the BDE or any other DLL,
SS points to your stack segment. If
you know anything about the lay-
out of a Windows application in
memory, you will know that the
stack lives in the data segment.

So, smart callbacks are smart
because the prolog code generated
for exportable callbacks loads the
correct segment into DS, by moving
SS into AX, which then later in the
prolog gets moved into DS. This
means the instance thunk is
redundant: whatever it stores in AX
is overwritten by the smart
callback prolog. So no more

MakeProcInstance. This is great
news for Delphi programmers who
don’t even need to know the
existence of such an API, but it is
also good for code compatibility
with Windows 95. The Win32
API doesn’t make any use of
MakeProcInstance, although a stub
function is there for code that’s
being ported to 32-bit. The smart
callback prolog looks like this:

mov ax, ss
nop
inc bp
push bp
mov bp, sp
push ds
mov ds, ax

Smart callbacks also remove the
earlier warning about calling
exportable callbacks directly.
Since the DS setup is all packaged in
the prolog now, instead of being
split over a thunk and a prolog,
callbacks compiled with the smart
callbacks option can be called from
almost anywhere.

Unfortunately, smart callbacks
are not a solution to all callback
problems. They only work with
callbacks that are called when your
task is active. Consider what would
happen if a callback in your appli-
cation was triggered when another
program was active. Because a task
switch does not occur (your
callback is called in the context of
the active task) that program’s SS
register would be set as your DS.
Any access you made to the data
segment would examine or modify
someone else’s data. Oh dear. Of
course if your callback doesn’t
cause any reference to DS, then
there will be no problem.

When we come across this
problem and eventually work out
what is going on, our first reaction
seems, judging by talk on Com-
puServe, to be to try and turn smart
callbacks off for the extent of the
callback definition, using compiler
directives. This is sadly doomed to
failure since the smart callbacks
option is a global setting, not some-
thing that can be turned on and off
at will. It is a shame that the
compiler doesn’t object to spuri-
ous {$K-} and {$K+} directives

36 The Delphi Magazine Issue 4

found in various units – it would
prevent much confusion.

A general solution for this prob-
lem for both the second and third
category of callbacks is to imple-
ment them in DLLs where DS gets
correctly set up without recourse
to confusing APIs or funny com-
piler options, but it is a chore to
manufacture a new project and
results in another file to distribute.
What would be desirable would be
to resolve the problem in the appli-
cation project. Turning off smart
callbacks completely is not a viable
option – various parts of the VCL
have been coded with the assump-
tion that smart callbacks are on. If
you turn them off, those sections
will not work.

One approach that does some-
thing akin to the desired job is to
use manually written assembler
prolog to enter the callback.
Instead of referring to the callback
directly or to an instance thunk
from MakeProcInstance, when call-
ing the callback related API, you
can refer to a dedicated assembler
routine like this:

procedure CallBackThunk;
 assembler;
asm
 { Cause DS to be set up
 correctly }
 mov ax, seg @Data
 { Bypass the smart callback
 instruction }
 jmp CallBackProc + 3
end;

What this does is to jump over the
main smart callback instruction
(MOV AX, SS and the following NOP
opcode, which together take three
bytes) after having set up AX with
an appropriate value. This is not an
all-singing, all-dancing solution,
but it allows you to get the desired
effect. The thing you need to bear
in mind is that it is the sort of code
I earlier questioned the omission of
in normal prolog code, and hence
has the same limitation – it will only
work with the first instance of an
application. Subsequent instances
will access the data of the first one.
Also the callback has to be careful
what it calls. For example, if it calls
the VCL ShowMessage routine, the

program will crash. It must not
cause any exportable routines to
be called, since that routine’s
prolog will load SS into DS again. All
other callbacks will still have smart
callback prolog and are still prone
to the inherent problem when
being called in the context of
another task.

This approach is fine if you only
want one instance. It poses a good
question about how to detect if
your program is a second (or
subsequent) instance and, if it is,
how to behave correctly. The
generally accepted definition of
correct behaviour when launching
a second copy of a multiple
instance app is to set focus to the
original instance. Many proposed
solutions don’t work with all
combinations of Delphi main
window properties. We’ll come
back to this problem, and indeed
the problem of the setting up the
right data segment for multiple
instances when we look at inter-
task callbacks, next time.

The third category of callbacks
generally need to be implemented
in DLLs to prevent system crashes
anyway (InterruptRegister call-
backs are an exception), which is
convenient since a DLL-based
callback will work regardless. The
reason for this DLL requirement is
that code executed at interrupt
time needs to be in fixed segments
(ones which won’t be paged out to
the swap file), but fixed segments
in executables are treated as move-
able (and so potential candidates
for being paged out – note this is
paging as distinct from normal
segment discarding) when read in
by Windows. This is examined
further by Matt Pietrek in Windows
Internals, published by Addison-
Wesley (Chapter 2, the section
entitled “Fixed Versus MOVEABLE
Segments”).

Okay, now that we have seen the
theory, let’s try putting it into
practice. We’ll go through taking
each of the callbacks listed above
in turn and see if we can make
something out of it.

Firstly, the two window
enumerators. Listing 1 shows some
code from the ENUMWND.DPR
project, that puts information

about each top-level window into a
listbox on the form when the form
starts up. The information can be
updated at any time by pressing an
alphanumeric key. To invoke the
callback, EnumWindows is called and
is passed two parameters. The first
is the address of the callback to call
for each top-level window in the
system, the second is any long in-
teger we want passed to the call-
back, simply for our own reference.
If we have no information we want
passed in, we can just pass zero. In
this case, I am passing the object
reference for the listbox on the
form (WindowBox).

Notice that I have been browsing
the source for the WinCrt unit to
identify how to future-proof my
code for Win32 as much as possible
before the launch of Delphi32.
WinCrt shows that exportable rou-
tines need to be marked stdcall
instead of export in Delphi32, and
also that Delphi32 will define a con-
ditional symbol WIN32 to allow one
source file to be maintained across
the two platforms.

Because the callback is a stand-
ard subroutine, not a method, it
can’t directly access the listbox
without de-referencing Form1 (ie
Form1.WindowBox). Arranging for the
listbox object reference to be
passed into the callback is an
alternative to doing this. The
callback itself is very simple: it sets
the return value to True, indicating
that the enumeration should not
terminate when this particular
invocation of the callback has
exited. After this, it adds a string of
information about the current win-
dow, obtained from GetWindowInfo,
into the listbox. GetWindowInfo uses
a variety of Windows APIs to find
the window class, window caption,
owning module and whether the
window is hidden or not, and
builds a representative string out
of them, in a format similar to that
used by WinSight. The result for my
Windows 95 desktop can be seen in
Figure 1. It’s interesting to see that
this 16-bit application can see 32-
bit application Windows in
Windows 95. The reasoning behind
this can be found in a Sept 1994
article by Matt Pietrek in Microsoft
Systems Journal, “Stepping Up To

November 1995 The Delphi Magazine 37

32 Bits: Chicago’s Process, Thread,
and Memory Management.”

Moving onto EnumChildWindows.
The example program for this,
ENUMCHLD.DPR does a similar
job to the previous example,
but uses both EnumWindows and
EnumChildWindows to populate an
outliner (also called WindowBox)
instead of a listbox. Figure 2 shows
this in action. The important parts
of the code are shown in Listing 2.

You can see that for each
top-level window, the code calls
EnumChildWindows with the given
window handle. Thus, for each top
level window we can find all its chil-
dren and add them in the outline as
child nodes (this is achieved in the
child window callback by preced-
ing each entry with a space charac-
ter, (#32, ASCII character 32).

In the next issue, we’ll look at the
inter-task callbacks available from
Windows and the BDE and see what
they can do for us when we can
work out how to call them...

Brian Long is an independent
consultant and trainer specialising
in Delphi. His email address is
76004.3437@compuserve.com

Copyright ©1995 Brian Long
All rights reserved.

➤ Figure 2

➤ Below:
Listing 2

unit Enumwndu;
interface
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes,
 Graphics, Controls, Forms, Dialogs, StdCtrls, ExtCtrls;
type
 TForm1 = class(TForm)
 WindowBox: TListBox;
 procedure FormCreate(Sender: TObject);
 procedure WindowBoxKeyPress(
 Sender: TObject; var Key: Char);
 end;
var Form1: TForm1;

implementation
{$R *.DFM}

function GetWindowInfo(Wnd: HWnd): String;
var
 Caption: array[0..255] of Char;
 ClassName: array[0..255] of Char;
 ExeName: array[0..255] of Char;
 Instance: Cardinal;
const
 Visibility: array[False..True] of String[8] =
 (’(hidden)’, ’’);
begin
 GetWindowText(Wnd, Caption, SizeOf(Caption));
 GetClassName(Wnd, ClassName, SizeOf(ClassName));
 {$ifndef WIN32}
 Instance := GetWindowWord(Wnd, gww_HInstance);

 {$else}
 Instance := GetWindowLong(Wnd, gwl_HInstance);
 {$endif}
 GetModuleFileName(Instance, ExeName, SizeOf(ExeName));
 Result := ’{’ + StrPas(ClassName) + ’} ’ +
 StrPas(ExeName) + ’ “’ +
 StrPas(Caption) + ’" ’ +
 Visibility[GetWindowLong(Wnd, gwl_Style) and
 ws_Visible <> 0];
end;

function EnumWindowsProc(
 Wnd: HWnd; UserData: Longint): Bool;
{$ifndef WIN32} export;{$else} stdcall;{$endif}
begin
 Result := True;
 TListBox(UserData).Items.Add(GetWindowInfo(Wnd));
end;

procedure TForm1.FormCreate(Sender: TObject);
begin
 EnumWindows(@EnumWindowsProc, Longint(WindowBox));
end;

procedure TForm1.WindowBoxKeyPress(
 Sender: TObject; var Key: Char);
begin
 WindowBox.Clear;
 EnumWindows(@EnumWindowsProc, Longint(WindowBox));
end;
end.

➤ Listing 1
➤ Figure 1

function EnumChildWindowsProc(Wnd: HWnd; UserData: Longint): Bool; export;
begin
 Result := True;
 TOutline(UserData).Lines.Add(#32 + GetWindowInfo(Wnd));
end;

function EnumWindowsProc(Wnd: HWnd; UserData: Longint): Bool; export;
begin
 Result := True;
 TOutline(UserData).Lines.Add(GetWindowInfo(Wnd));
 EnumChildWindows(Wnd, @EnumChildWindowsProc, UserData);
end;

38 The Delphi Magazine Issue 4

